
Preface

The central goal of this textbook is to provide readers with a framework for software
measurement from a theoretical, practical and educational view. Software
measurement is not a mature science, today. On the one side, there is a lack of a
theoretical framework for software measurement, and on the other side, there is a
lack of education of scientists, practitioners and students in the area of software
measurement. The book was written with the intention to investigate software
measurement principles and to give theoretical and practical guidelines for software
measurement. We focus on a qualitative interpretation of quantitative results. For
example, the models of complexity behind measures, the model of effort behind the
COCOMO model, the model behind the Function-Point Method, and models of
understandability of object-oriented measures, are discussed. For this investigations
we use axiom systems in a descriptive way. These axiom systems give qualitative
criteria of measurement of objects in the software engineering area. The final result
are hypotheses of reality that support the development of empirical theories related to
the quality of software.

By the time the reader reaches the end of this book, scientists, teachers,
practitioners, and students should be able to define the basic terminology of software
measurement, to explain the definition of a measure; the definition of a
homomorphism, the ideas / secrets behind software measures, the empirical
conditions behind software measures, the scale types, the use of qualitative and
quantitative methods, the role of software measures during the software life-cycle,
the idea behind software cost estimation models and the Function-Point method, the
exact definitions of validation of software measures, the foundations of prediction
models, the use of meaningful statistics, and the reader should be able to explain
problems in the area of software measurement.

The necessity of software measurement can be derived from the definition of
software engineering by IEEE: The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software;
that is, the application of engineering to software. As indicated by the word
quantifiable, at least one key professional society has acknowledged measurement as
an integral part of a well-conceived software approach, and not merely an adjunct.
During the seventies and eighties, software measures mostly were used without a



PrefaceII

proper theory. A qualitative interpretation of numbers mostly often was neglected.
However, some authors, like Curtis, Dunsmore, Fenton, Bieman, the Grubstake
Group, Schneidewind, Henderson-Sellers, Melton, and Weyuker discussed
(theoretical) properties for software measures. The goal of these discussions was to
formulate standardized properties for software measures and to put software
measurement on firm basis. At the beginning of the nineties, more and more
scientists required the development of fundamental principles of software
measurement. Reasons for that were the difficulty to interpret the meaning of
numbers and the confusing situation expressed by more than one thousand software
measures of all kinds.

In 1985 the author introduced the use of measurement theory in the area of
software measurement. Classic measurement theory, as described in the texts of
Krantz et al., Luce et al., and Roberts, was extended to needs of software
measurement by the author.

The first discussions of classic measurement principles at the department of
computer science at the Technische Universität Berlin started in the middle of the
seventies by Cherniavsky. The work of Cherniavsky was an important step forward
to recognize the connections between a measure and what to measure. The work of
Cherniavsky in analyzing measures was proceeded by that of Bollmann, also at the
Technische Universität Berlin, in the research field of evaluation measures for
information retrieval systems.

As a consequence of measurement in the area of information retrieval, the work of
the author on software (complexity) measures started in 1981. The result of the
research during 1981-1985 was the 1985 dissertation by the author: Horst Zuse:
Meßtheoretische Analyse von Statischen Softwarekomplexitätsmaßen (Translated by
the author: Horst Zuse: Measurement Theoretic Analysis of Static Software
Complexity Measures.). From 1987 to 1988 the work in software complexity
measurement was continued by the author at the IBM Thomas J. Watson Research
Center in Yorktown Heights, USA. There, Tom Corbi, supported the use of software
measurement in the Project PUNDIT (Program UNDerstanding Investigation Tool).
The work on software measures was extended and the first version of the software
system MDS was developed and implemented. The System MDS was used to
demonstrate the use of software measures with a qualitative interpretation. Back at
the Technische Universität Berlin, in 1988, the author intensified his research on
software measures.

In 1991 the results of this research were presented in the first book of the author:
Horst Zuse: Software Complexity - Measures and Methods, DeGruyter Publisher,
1991. While the book of 1991 considered exclusively intra-modular software
complexity measures, this book focuses on a framework for software measurement
from a theoretical, practical and especially an educational view. Only parts of
Chapter 4 (measurement theory) of the previous book are also discussed in a very
extended form in this book. This book considers measures of the specification,
design, coding, testing and maintenance phase. The theoretical concepts and
measurement structures are developed for this kind of measures, and especially for



Preface III

the validation of software measures and prediction models. More than one hundred
exercises shall help the reader to get a deeper understanding of software
measurement.

Many ideas for this book came from discussions with students in the lecture:
Methoden des Messens für Informatiker (Methods of Measurement in Computer
Science). Also many ideas came from the many discussions on seminars for people of
industry in the scope of DECollege and ORACLE, organized by Barbara Wix, in the
years 1989-1994, and the many tutorials in North America as presented by the author
from 1988 to 1995. From August 1994 to March 1995, the Gesellschaft für
Mathematik und Datenverarbeitung, St. Augustin (German National Research Center
for Computer Science) (GMD) invited the author as a guest researcher. During this
time parts of this book were created.

In order to put through the concepts of software measurement to students, teachers
and scientists in a more comprehensive form without mathematics, the System ZD-
MIS (Zuse / Drabe Measure Information System) has been developed. It is an
educational system with a large database of software measures, a database of
literature and a glossary of terms in the software measurement area. It is running on a
PC. It uses modern multi-media techniques and allows the user to learn theoretical
and practical concepts of software measurement by a dialog.
The book was firstly written in WORD6a, then in WORD7.0 and finished in
WORD97. The graphics were created with VISIO 3.0/4.0. These software systems
were firstly used with WINDOWS 3.11 and then with WINDOWS 95 under an
INTEL PENTIUM 90 / 166 Processor with 32MB main storage. The prints for the
book were made on a HP 5L Laserprinter.

Berlin, November 1997 Horst Zuse





Acknowledgments

Writing a book of this type is a long and an expensive procedure. It involves an
unbroken thread of research. The red thread of this book is a framework for software
measurement in form of a textbook. The work on this book began at the end of the
eighties, and was interrupted by many reasons. This book involves the collection of
many questions and ideas by people on seminars and tutorials in Europe, North
America and Australia, but also the many questions of students, and the many
contributions of scientists, friends, etc. Without these many stimuli it would have
been impossible to finish this work. This book also includes the reply of the many
not investigated questions and research topics of my first book: Horst Zuse: Software
Complexity - Measures and Methods, DeGruyter Publisher, 1991.

Too many people, like colleagues, friends, students, etc. have contributed to the
development of my ideas for me to acknowledge them all individually. However, I
would especially like to thank some people and institutions.

I thank Fevzi Belli from the Gesamthochschule Paderborn for recommending this
book for publication. He already recommended my 1991’s book for publication.

Again, I thank Peter Bollmann-Sdorra for the very helpful and detailed
suggestions on my first book, for his continued suggestions and for the very
constructive discussions over many years that supported the completion of this book.
I first learned about the measurement theory in a lecture given by Peter at the end of
the seventies.

Norman Fenton from the City University in London, UK, deserves much thanks.
He always supported my work and especially the measurement theoretic framework
applied to software measures. Also, Robin Whitty from Southbank University,
London, UK, deserves much appreciation for supporting my work and publishing the
book: Denvir, Herman and Whitty (Eds.): Workshops in Computing: Proceedings of
the BCS-FACS Workshop on Formal Aspects of Measurement, South Bank
University, London, May 5, 1991, where we had the possibility to publish an article
of the foundations of software measurement.

I thank Jim Hemsley and Harry Sneed who asked me in 1989 to participate the
ESPRIT II METKIT Project, which did run from 1989 till 1992. In this context I also
thank Mike Kelly and Nick Ashley for the many discussions.



1 IntroductionVI

I also thank Taz Daughtrey who gave me the possibility to present my work on the
International Conferences on Software Quality, (Dayton / Ohio 1991, Triangle
Research Park / North Carolina 1992, and Lake Tahoe / Nevada 1993), which were
sponsored by the American Society for Quality Control.

I thank Pierre Robillard of Ecole Poytechnic in Montreal / Canada, for the many
discussions on software measurement and his care on my visit in 1992 in Montreal.

I am very thankful to Alain Abran (University of Quebec at Montreal), Pierre
Bourque (University Quebec of Montreal) and Jean Mayrand (Bell Lab Canada) for
their support to give software measurement tutorials in Montreal in 1992 and 1995.
From November 27-28, 1995, the Joint Germany-Quebec Software Metrics
Workshop took place at the Technische Universität Berlin. The goal of this workshop
was to cooperate in several areas of software measurement from theoretical and
practical views. In 1996 the 6th Workshop of the GI-Arbeitsgruppe Softwaremetriken
and the Germany-Quebec Workshop on Software Metrics took place in Regensburg.

I thank Victor Basili for the many discussions about the sense, the meaningfulness
of scales and the application of measurement theory in software measurement. I also
appreciated the many discussions with Norman Schneidewind, John Munson, Taghi
Khoshgoftaar, Paul Oman, and Warren Harrison.

Nancy Mead with the Software Engineering Institute (SEI) in Pittsburgh /
Pennsylvania, deserves much thanks because she always supported my work.

Especially, I thank Jim Bieman of Colorado State University in Fort Collins /
Colorado for the many discussions, for his engagement in measurement theory and
his steady requirements for a framework for quantitative methods in software
engineering. Since 1994 he is chair of the IEEE Council of Quantitative Methods in
Software Engineering. This committee publishes the Q-Methods Newsletter and
sponsors the Software Metrics Symposium as part of a growing series of programs to
understand and promote quantitative approaches in software engineering.

Tom McCabe deserves my thanks for the many discussions we had about his work
in software measurement. I met him the first time in 1988 at the National Security
Agency (NSA) in Baltimore / Maryland, where I was invited for a talk about software
measurement. In 1994 I met him in München / Germany where we could continue
our discussions.

Barbara Wix deserves much thanks for her support of my work. Barbara organized
from 1989-1993 in the scope of DECollege / München and from 1994 with ORACLE
/ München, together with us, many seminars and symposia about software
measurement. I think, that Barbara in 1991 organized the first symposium on
software measurement in Germany with an attendance of more than seventy people.

I thank Fernando Brito de Abreu for organizing a workshop of object-oriented
software measurement in Aarhus / Denmark in August 1995. There, for example,
special aspects of object-oriented approaches could be discussed together with Brian
Henderson-Sellers, who also works in the area of object-oriented measurement.

I thank the Gesellschaft für Mathematik und Datenverarbeitung (GMD) in St.
Augustin (German National Research Center for Computer Science) for their support
of my work. They invited me from August 1, 1994 till March 31, 1995 as a guest



1 Introduction VII

researcher in the Institute for Software Engineering (ISA). The many discussions
during this time helped me to improve my work on software measurement.

I thank the ASMA (Australian Software Metric Association) for their invitation to
the Third Australia Conference on Software Metrics in Melbourne in November
1996 as a keynote speaker. I also thanks Brian Henderson-Sellers for inviting me in
his institute in Hawthorne close to Melbourne.

Herman Flessner from the University of Hamburg deserves much thanks for
recommending a lecture of mine in a course of economics in computers science in the
area of software quality and measurement at the University of Stettin / Poland in the
summer term 1997.

Shortly after the wall between West- and East-Germany on November 9, 1989,
was gone, I met Reiner Dumke and Achim Winkler from the Guericke Universität in
Magdeburg. Reiner Dumke also worked on software measurement since many years,
but we did not hear anything of each other. Since this time many cooperations have
been established, and, among others,we are organizing many workshops on software
measurement in the scope of the GI (Gesellschaft für Informatik). I thank Reiner
Dumke for his engagement in software measurement, for his steady support of my
work, for the many suggestions, and for reviewing this book. In 1996 R.Dumke,
F.Ebert, H.Rudolph, and H.Zuse published the first edition of the Journal: Metric
News - Journal of the GI-Interest Group on Software Metrics. Otto von Guericke
University of Magdeburg, Volume 1, Number 1, September 1996. This journal
informs researchers and practitioners about news in the software measurement area.

I thank all the students of the lecture Methods of Measurement Theory in
Computer Science for the many discussions. Andreas Mennert wrote two theses of
software measurement, and in 1993 he was five months with Siemens Corporate
Research / New Jersey / USA. There he implemented many measures of my first
book under UNIX and analyzed big software systems. Thomas Fetcke followed me to
the Gesellschaft für Mathematik und Datenverarbeitung (GMD) in 1994, where he
wrote a diploma thesis about object-oriented software measures. Thomas joined the
group of Alain Abran (University of Quebec at Montreal) as a PhD student for one
year from May 1996 to May 1997. He deserves much thanks for reviewing this book
together with his colleagues. In 1995 Lutz Dierbach implemented the axiomatic
approach of the first book under a PC under WINDOWS 3.11.

Finally, I have to thank very much my colleagues at the Scientific Computer
Center Informatik RechnerBetrieb (IRB13) at the department of computer science at
the Technische Universität Berlin for their support to complete this book. I especially
thank Dr. Heinz Seidlitz and Siegfried Bürk.

1 Introduction

The perception of measures



1 Introduction8

and harmony is surrounded
by a peculiar magic.

Carl Friedrich Gauß (1777-1855)

For more than fifty years computers have played a more and more important role in
our life. It was estimated that, by 1990, one half of American work force will rely on
computers and software to do its daily work. As computer hardware costs continue to
decline, the demand for new applications software continues to increase at a rapid
rate.

In general, a producer should be interested in the quality of a product, if he
produces cars, video recorders, computers, etc. In the area of software we have a
similar situation. Several aspects of quality of software were discussed in the past.
Almost thirty years ago, software engineering has been established. Much progress
improving the quality of software has been made during the last twenty five years.
With the size and complexity of software ever on the rise, the software crisis, first
mentioned as far back as the 1968 NATO Software Engineering Conference
/NAUR69/, is even more apparent now /SHAP97/.

The field of software measurement provides approaches to the quantification of
quality aspects of software, related to the product, the process and the resources. The
most famous software measures, among others, are lines-of-code, the Halstead’s
measures, McCabe’s measures, the Measure Defect-Density, the COCOMO model
and the Function-Point Method. However, there are many other software measures,
and it is necessary to be able to decide when to use which measure and how.
Software measures are used to measure specific attributes of a software product of
the software development process. We use them to derive a basis for estimates, to
track project progress, to determine complexity, to help us to understand when we
have achieved a desired state of software quality, to analyze the defects, and to
experimental validate best practices. In short, they help us making better decisions.

Software measurement is a field of software engineering, it belongs to
experimental software engineering, that means the understanding of strength and
weaknesses of methods and tools in order to tailor them to specific goals of a
particular software project. A cornerstone in this approach is measurement. The
necessity of software measurement can be derived from the definition of software
engineering by IEEE /IEEE90/: The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software;
that is, the application of engineering to software. As indicated by the word
quantifiable, at least one key professional society has acknowledged measurement as
an integral part of a well-conceived software approach, and not merely an adjunct.



2.9 Exercises 9

The terminology in the area of software measurement is not unique. We use the
terms measures and metrics as synonyms. We do not use them in the sense of a space
but as a mapping.

Software Costs and the Maintenance Problem

Today, we have still the fact that over 70% of the software development effort
/BOEH79/, /PAGE88/, /SCHA93/, p.11, is spent in testing and maintenance of
software. Schedule and cost estimates of software are grossly inaccurate, software
has still a poor quality and the productivity rate for software is increasing more
slowly than the demand for software. Schneidewind /SCHN83/ points out that there
exists a maintenance problem because 70 - 80% percent of existing software was
produced prior to significant use of structured programming, It is difficult to
determine whether a change in code will affect something, It is difficult to relate
specific programming actions to specific code. The major problem in doing
maintenance is that we cannot do maintenance on a system which is not designed for
maintenance. Roger Pressman writes about software maintenance /PRES92/: By most
estimates, the average software engineering organization spends 60 to 70 percent of
its overall resources correcting, adapting, enhancing, and reengineering existing
programs—an activity that we call "software maintenance." Yet this extremely
important subject receives relatively little attention in the technical literature.

In 1995 the Bundesministerium für Forschung und Technologie /BMFT95/
created a software initiative program. Among others,we can find there: Software
übernimmt wesentliche Aufgaben der Steuerung von Anlagen und Geräten und prägt
damit zunehmend sowohl die Funktionalität als auch die Qualität der Erzeugnisse. In
exportorientierten Branchen der deutschen Wirtschaft übersteigt der Software-Anteil
an der Wertschöpfung der Produkte häufig die 50%-Marke. Bei Anlagen der
digitalen Vermittlungstechnik entfallen bis zu 80% der Entwicklungskosten auf
Software, so daß schon jetzt mehr als die Hälfte der Wertschöpfung von Siemens auf
Software- Leistungen entfällt. Diese Entwicklung geht weiter (Heinrich von Pierer
SIEMENS AG, im FAZ Unternehmergespräch 10.8.1992. (Translation by the author:
Software takes over essential tasks by controlling installations and equipments and
forms more and more the functionality and quality of products. In export oriented
areas of the German economy the proportion of software production work exceeds
the 50% label. In the digital communication techniques 80% of development costs
are software costs. Today more than half the production work is based on software
performance. This development proceeds. (Heinrich von Pierer SIEMENS AG, in an
interview with FAZ (Frankfurter Allgemeine Zeitung), August, 1992) /PIER92/.

However, there is not only a maintenance problem, as Card /CARD90/ and Page-
Jones /PAGE88/ point out: Although traditional rules of thumb estimate the
proportion of development effort spent in design at 40 percent /CARD90/, recent
estimates show an increase to about 60 percent for new methods. Thus, getting a
good design is ever more essential to successful software development. In /PAGE88/,
p.26, a good summary about inflexible and non-maintainable systems is given. Page-



1 Introduction10

Jones writes there: Sixty percent of the whole lifetime cost of the system - twice as
much was spent at development - is spent on maintenance. Testing and debugging
account for further 15 percent of the total cost; so 82 percent of the money spent on a
system is consumed by putting it right and keeping it right. Only 15 percent is spent
in constructing it in the first place.

The citations above show that software maintenance effort is one major problem,
but getting a good design is more also very essential to get a successful software
development.

Needs for Determining Quality of Software with Engineering Methods

The facts presented in the previous section have generated the need of determining
the quality of software with engineering methods. For this reason, computer scientists
and engineers have begun to place increasing attention on quantitative methods as an
information source of the quality of software. Already in 1976, Belady and Lehman
stated in their classic research on the development of the IBM OS/360 operating
system /BELA76/: Law of increasing entropy: the entropy of a system (its
unstructuredness) increase with time, unless specific work is executed to maintain or
reduce it. Entropy can result in severe complications when a project has to be
modified and is generally an obstacle of maintenance. These statements above
characterize the need of quantitative methods in order to understand the function of a
large software system.

Since software engineering was first proposed as a discipline in its own right, see
Naur /NAUR69/, the primary focus of attention has moved progressively earlier in
the so-called project life-cycle. In the 1960’s and 1970’s the major debates focused
on code, the structure of code, etc. Since the end of the eighties, interest focuses more
and more on design aspects of software /PARN71/, /PARN72/, /PARN79/. There the
criteria for modularization of software in the context of maintenance are discussed.
Design methodologies such as structured design by Stevens et al. /STEV74/,
Jackson's structured programming /JACK76/ and the object-oriented design of Booch
/BOOC86/ attempt to address the problem of very late feedback by providing
guidelines for the generation of systems structures and design evaluation criteria. The
dichotomy between the importance of applying quantitative methods to the design of
system architecture, and the absence of consistent results, or widely accepted
measures, typifies the area of software measurement at present.

We feel that if software engineering is truly to become an engineering discipline,
then quantitative models and the use of measurement are imperative. Yet, at present,
there appears to be little progress in this direction.

Large Software Systems and Software Reuse



2.9 Exercises 11

One of the major problems of large software systems is the understandability,
complexity or comprehensibility of programs or entire software systems. Mostly, the
three terms are used as synonyms. Shapiro /SHAP97/ points this out very clearly: The
complexity associated with software technology, however, is not that
straightforward. Instead, it involves numerous facets and dimensions. Complexity's
various contexts include algorithmic efficiency, the structure of procedures and data,
and the psychological effort of problem comprehension. translation, and system
design. Those contexts have manifested themselves in issues concerning structured
programming, software metrics, program verification, formal methods generally,
programming languages, the software life cycle, and programming environments. No
solution aimed at a single area could provide the degree of relief many were seeking.
Moreover, agreeing on singular approaches with respect to any of these issues also
frequently proved difficult in the face of incommensurable philosophies and
inescapable trade-offs. Recognition of the futility of technical singularity in any
realm of software technology was slow in dawning.

Many methods have been developed to increase the degree of understandability. A
lot of time is spent reading and understanding programs in order to remove faults or
to adapt the program to changed requirements. Many factors in the program code
affect the comprehensibility of the program, such as the language used, the naming of
variables, the structure, the indentation, explanatory documentation, the experience
of the programmer, etc. Keywords, like coupling between modules, cohesion of
modules, modularization, structured design, object-oriented design, etc. shall show
some methods. However, the major goal is to map such keywords or qualitative
attributes into quantitative attributes. Here, software measures can help to capture
certain attributes of software quality.

Software reuse has been touted as a means of overcoming the software crisis. It
promises to significantly improve end-product quality and process productivity in
software development. Poulin /POUL97/ published an excellent book considering
software measures for the reuse of software components. On p.2 he points out: We
normally consider "software" reuse as the use of existing components of source code
to develop a new software program, or application. In this sense, a group of people,
or organisation, the existing components /GART91/. However, reusable software
components can take many other forms, including executable programs, code
segments, documentation, requirements, design and architectures, test data, test
plans, and experience. With this in mind, we define a reusable component as a group
of functionally related software modules and their associated documentation. For
example, a reusable component may take the form of a software "building block" of
routines and documentation that offers primitive operations on top of which
programmers can develop more complex and specific capabilities /LENZ87/.

It is our understanding that measurement has to show whether reuse of software
components really leads to lower maintenance costs. The proposed measures in the
book of Poulin can help to achieve this goal.
The Importance of Software Measures



1 Introduction12

Some twenty or twenty-five years ago the area of software measures was a curiosity
confined to a few university researchers and some industrial organizations. The first
paper which exists in the research area of software measurement probably is from
Rubey et al. /RUBE68/. No earlier reference can be found in this paper. Now,
software measurement is a well-established discipline with a growing band of
practitioners and adherents. Since the end of the seventies software measurement is
becoming recognized as a useful way to soundly plan and control the properties and
development of software and software projects. The research area of software
measurement is also called software metrics or software engineering metrics. Here
the term engineering indicates that engineering methods shall be used in the area of
software measurement.

In 1991 Rombach /ROMB91/, p.217, wrote that software measurement is an
essential component of mature software technology. It supports quality as well as
project management. As far as quality management is concerned, measurement can
help to investigate software related phenomena and thus contribute to building better
software products, processes and quality models. As far as project management is
concerned, measurement can help state software requirements unambiguously, assess
their proper implementation throughout the software project, and achieve convincing
product certification. The measurement goal of interest determines which measures
are appropriate. The benefits of software measurement from a software engineering
perspective can be summarized in the following way /GILE95/: Gives you control of
products and processes, demonstrate the productivity, effectiveness, and quality of
the work, gain customer respect and credibility with management, identify where
improvements are needed, let you know when to laugh and to when to cry.

From a management perspective, measures support up-front estimation of time,
resources, and quality, provide true status of projects to permit early insight into
potential problems, enable the correction of problems before the consequences
consume you, guide decisions on resources, propriety adjustments, and schedule
stability based on data, not best guesses, and provide hard data on which processes
can be improved and where to improve them.

In 1997, Shari Pfleeger mentioned in a guest editor’s introduction /PFLE97/ about
software measurement, among other: Measurement is becoming an integral part of
development and maintenance activities. Measurement is used not only for
understanding, controlling, and improving development, but also for determining the
best ways to help practitioners and researchers. Empirical software engineering will
help us fine-tune our measurement activities so that we get the most information for
the least measurement effort. As in most other sciences, we are moving along a
measurement continuum; just as temperature measurement began as an index finger
in the water (and a scale of not hot enough, hot enough, and too hot) and grew to
sophisticated scales, tools, and techniques, so too is software measurement maturing
and leading to a more sophisticated understanding of better ways to produce better
products.

Very often, people cite Lord Kelvin, in order to make clear that measurement is an
essential concept of science. As Lord Kelvin (Original name: William Thomson)



2.9 Exercises 13

/KELV91/ (1824-1907) said a century ago: When you can measure what you are
speaking about, and express it in numbers, you know something about it, but when
you cannot measure it, when you cannot express it in numbers, your knowledge is of
meager and unsatisfactory kind; it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the stage of science. The statement above is
certainly true, but it focuses too much on measurement and leaves out other formal
methods, which are essential in software engineering, too. We have to mention here,
that software measurement alone does not guarantee an excellent software product.
Software measurement is essential in areas, where empirical views, like quality, cost
estimation, understandability, etc., are important. From our view, theory building is
the major task of science and measurement in all areas is an important tool for that.

Current State of Software Measurement

The field of software measurement is too large to describe the current state
completely (See for that Chapter 3.). For this reason we give some highlights. While
software measures have not yet achieved a degree of scientific maturity, it is still a
valid concept and much work has been undertaken in the field. Although the current
state of software measurement is still confused, software measures are more and
more applied during every phase of the software life-cycle. Prediction of costs or
effort is one of the major requirements. The purpose of prediction is to provide
software managers with a forecast of the quality of the operational software early in
the development process so that corrective actions can be taken, if necessary, when
the cost is low. Other important areas of software measurement are cost estimation,
software size estimation, effort for testing, and effort of maintenance after delivery of
the product. It is also widely accepted that software measurement plays a dominant
part with ISO9000-3 and ISO9126 standards that require measurement of processes
and products. Ince et al. /INCE94/ summarize in their paper about software measures
and ISO9000-3: Thus, the software developer who is able to measure has either
reached the standard of ISO9000-3 or is not far from it.

In some areas remarkable progress in the area of software measurement has been
done. One example is the Function Point Method of Albrecht /ALBR83/, which
estimates the size of a software project. Thousands of companies all over the world
use the Function-Point Method, and, mostly in UK, the modified MARK II Method
of Symons /SYMO88/ is used. The Function-Point method is a good example for a
pragmatically created software measure. The validity of this measure has been tried
to show by many experiments. However, there are many unclear properties of the
Function-Point Method. The complexity factors seem to be arbitrary and there is no
empirical evidence, if a factor is 2 or 4. The COCOMO model of Boehm /BOEH81/
is a prediction model based on the Measure LOC. It is not really a specification
measure, but it can be used in this phase of the software life-cycle. Initially, the basic
COCOMO model was applied to the 700K LOC software system in question. Of note
is that the basic COCOMO applies to small and medium-sized software products that



1 Introduction14

are developed in a familiar in-house environment. Success can be reported in the area
of code analysis and measurement in the software design phase

Today, the hypothesis is undisputed that a good software design causes lower
maintenance costs. Page-Jones /PAGE88/ supports this view by presenting dozens of
examples of a good software design using the Constantine Method without any
measurement. The question is here how well this hypothesis can be validated with
software measures.

There is another interesting aspect in the area of software measurement. Object-
oriented techniques were introduced as a new discipline in the area of software
engineering, that shall avoid, among others,disadvantages of imperative languages.
We will not discuss here the advantages and disadvantages of object-oriented
techniques, but till today we found more than two hundred software measures which
were developed or defined for object-oriented programming techniques. Remarkable
is, that these software measures are mostly focused on understandability of object-
oriented systems.

Problematic of Software Measurement

One basic problem of every science ascribing itself to the characteristic empirical
concerns the meaning of experience. Namely, in the field of empirical science,
theories as systems of statements always refer to what can be experienced, in contrast
to mathematics and logic, where truth can be established independently of the nature
of any reality. The function of experience is therefore considered as a final test of the
validity of these statements called science. Most scientists today agree upon the fact
that observation always implies certain assumptions, concepts, etc. - in short: that it
is conducted by theory.

The question is why is software measurement so problematic? One answer may
be, following Roche et al. /ROCH94/, that software engineering is a highly complex
process producing highly complex products. Moreover, each project and its products
tend to be something of one off in nature, a point highlighted by Schneidewind as a
difficulty in validating a methodology /SCHN91/. Other problems are that people do
not like to be controlled by software measures. And, last not least, there is a lack of
an intensive education of people in software measurement regarding both: a
theoretical framework for software measurement and a soundly planning of
experiments.

The major problem of measurement in software engineering, but also in the area
of artificial intelligence, is a skepticism of using numerical values because there is no
satisfaction in the interpretation the numbers and a semantic of the values is missing.
This lack may be true in some cases, but not generally. The assignment of simple
numbers to hypotheses without knowing the empirical evidence of these numbers is a
major mistake. The empirical evidence of numbers can be characterized, among
others,by several empirical conditions and scale types. Numbers are elements of a
scale, that means, they are subject of a homomorphic mapping of an empirical to a
numerical relational system and vice versa. Mostly, these facts are neglected.



2.9 Exercises 15

However, we think, today it is widely accepted that software measurement is a
valuable technique for understanding, guiding, controlling and improving software
development. It is an interesting phenomenon that the Measure LOC and the
Measures of McCabe /MCCA76/ today still are the most used and discussed software
measures. The Measure of McCabe was defined for single module complexity but
also for the entire system complexity. The question is still discussed whether the
Measure of McCabe is a good or a bad measure. Another unsolved question is
whether the Measure of McCabe can be used as a predictor for software maintenance
attributes. We think the reasons for these discussion are the following: firstly, there is
a lack of education in the area of software measurement, secondly, many people
believe that software measurement is an easy thing, and thirdly, although there exists
a proper theory for software measurement - called measurement theory (see for that
Zuse /ZUSE89/, /ZUSE91/, /ZUSE92/, /ZUSE94/, Bollmann-Sdorra and Zuse
/BOLL93/, Baker et al. /BAKE89/, Fenton et al. /FENT91/, /FENT96/) - only a few
people consider and apply this theory.

Statistical methods are often used in the software measurement area. This is
justified because there are existing many empirical data. It is our view, that a theory
of software measurement and the application of statistical methods support each
other.

Poor Education

As mentioned above, the education of students and scientists in software
measurement is a major problem. Our impression is that people sometimes think, that
measurement is a simple procedure. With some
exceptions a theory of software measurement is not
presented and used by scientists. Many scientists
point out, that the current state of software measures
is not satisfying. In Mills /MILL88/ we can find:
Unfortunately, most of the metrics defined have
lacked one or both characteristics: a sound
conceptual, theoretical basis, statistically
significant experimental validation. Jones
/JONE94a/ states very clearly: All graduate software engineers and computer
scientists should understand the basic tools of measurement and metrics. Jones
furthermore points out, that it is a pity to hear from a graduate student: I'm a
graduate student in computer science at Stanford, and I've never heard of Function-
Points. Can you tell me what they are?

In 1995 Rubin mentioned five myths of software measurement: the first myth is
that measurement is overhead: measurement is actually a value-added, real-time part
of information technology practice and process. The second is that there is a best
measure and that selecting it will solve all measurement problems, but there is no
single measure that can assess all aspects of an information technology organization.
The third myth is that the most critical success factor for a measurement program is

Software
Measurement

V = (N1 + N2) log (n1 + n2)



1 Introduction16

selecting the right measure, but more important are the fit of the measures with
business goals, their fit as part of the workflow process, their intrinsic quality, and
the organization's willingness to use them. The fourth myth is that measures last
forever, but in fact they need to be designed to accommodate enhancements. The fifth
myth is that information technology should focus on its internals, but in fact it needs
to be measured as part of a business.

These statements show that the education of people in the field of software
measurement is poor. In order to use software measurement in the sense of an
engineering discipline, like electrical engineering, a theoretical framework for
software measurement is necessary and the education of people has to be improved.
Experimental results can only be understood, if we have hypotheses of reality. For
this reason, this book focuses on a framework for software measurement.

Our Framework for Software Measurement

Not measurement itself, but building (empirical) theories is one of the major goals in
science. Undoubted, measurement is one of the most important foundations for the
development of empirical theories. Today, it is a fact, that empirical theories in the
area of software measurement are neglected. Endres /ENDR89/ formulates the
empirical and theoretical role of software engineering very clearly: Like any other
engineering discipline, software engineering has both its theoretical and empirical
foundations. In order to create hypotheses of reality and to build empirical theories,
we decided to present a framework for software measurement. Our framework for
software measurement is based on measurement theory, that is based on the texts of
Roberts /ROBE79/, Krantz et al. /KRAN71/ and Luce et al. /LUCE90/. The author
extended the basic assumptions of classic measurement theory especially for the
needs in the software engineering area. Measurement theory gives clear definitions of
terminology, a sound basis of software measures, criteria for experimentation,
conditions for validation of software measures, foundations of prediction models,
empirical properties of software measures, and criteria for measurement scales. From
our view it is important to mention that measurement scales are not the major focus
of measurement theory. The major advantages of measurement theory are hypotheses
about reality, an empirical interpretation of measurement values, and the translation
of numerical properties back to empirical properties, which can lead to theory
building. The interpretation of measurement values is essential because people
measure in order to get objective information. You cannot get objective information
and make decisions based on measurement values without a theory or a framework
for software measurement.



2.9 Exercises 17

We think, it is essential to have a unique terminology of software measurement, a
mechanism for interpreting numbers, criteria for selecting software measures,
conditions for comparing cost estimation models, theoretical
foundations of the validation of software measures and the
models for prediction. In short: a framework for software
measurement shall help teachers, practitioners and students to
understand the numbers, the results of experimentation and the
proper use of statistics.

We use an axiomatic approach in order to characterize
software measures or problems in the software measurement area.
Axioms are basic assumptions of reality. The use of an axiomatic
approach does not imply that the axioms always hold in reality. The advantage of an
axiomatic approach is that there are well defined conditions under which some
mathematical models hold. These conditions can be criticized or falsified by
discussions or experiments. This might be difficult if only a mathematical formula is
given. We do not believe that a mathematical model for something should hold in
every situation. Even in classical physics many mathematical models only hold in
special situations. Our proposed axioms can be discussed by experts. Hence, the
axioms might be true. On the other hand, for every expert opinion there is mostly
another expert with the opposite opinion. But even then a mathematical model is not
useless because to clarifies the situation.

The axiom systems established by measurement theory
and applied to software measurement are like a language.
Scientists, practitioners and students can talk about properties
of measures in every phase of the life-cycle. Without such a
language it is more a feeling than science to talk about
measures. This language in form of axioms covers all types
of measures, it allows to give criteria for the validation of
measures, presents theorems for prediction models, and even
the empirical assumptions of the Function-Point Method can
be clarified. The results of our methodological investigations are qualitative models
behind measures.

In short: We hope that our work will encourage a more fundamental look at
software measurement at all and ultimately lead to a scientific progress in the
software measurement area.

Mathematics and Software Measurement

For some authors, there exists the problem to apply mathematics in an empirical
science. In literature we can find the statement: Science is not mathematics. But, it is
a fact that mathematics was introduced in software engineering long before
measurement theory. Until now approximately 1500 software measures were defined.
Measures are mathematical functions. Each of these measures define by itself a
mathematical model of complexity, maintainability, cost estimation, etc. So, why not

The past in
Science

showed that a
real Progress

cannot be
made without

Theory
Building

Most scientists today
agree upon the fact

that observation
always implies certain

assumptions,
concepts, etc. - in

short: that is
conducted by theory.



1 Introduction18

use mathematics and especially measurement theory in order to study these measures
and models? Doing this, we can see that there are several contradicting positions in
this area.

Glass /GLAS96/ pointed out in an article of the relationship between theory and
practice in software engineering: Theory and practice are traveling very different
roads on the topic of software metrics. Theoreticians have proposed a number of
metrics, but most of them are unverified and there are considerable differences
among theorists as to their value. Practitioners, on the other hand, seldom use
metrics, but when they do the set used is often unrelated to the set proposed by
theorists. At the present time, it is difficult to say whether theory or practice is
leading in the topic of metrics, but it is possible to say that the field is still in turmoil.
In the next decade, we should find out which is ahead, theory or practice.

We do not agree to Glass saying that persons who propose measures are
theoreticians. From our view proposing a measure is a method, but it is not a theory
of measures or measurement. Our view of theoreticians in the software measurement
area is based, among others,on a theory of empirical laws combined with numerical
properties. Such empirical laws can be denoted as models behind measures. As we
will show in this book, it is our view that behind every measure a qualitative model
of complexity, cost estimation, maintainability, etc. is hidden. A theory of software
measurement includes at least the question: What does a measure measure? The
statement of Glass: Practitioners, on the other hand, seldom use metrics, but when
they do the set used is often unrelated to the set proposed by theorists, shows very
clearly that we need a theory for software measurement. Our axiom systems support
to clarify the different views of theoreticians and practitioners.

We use as mathematics algebraic systems, homomorphic mappings of one system
into another system, empirical and numerical relations, sets, and measurement theory,
like the extensive structure. The mathematics are not well known among software
engineers. For this reason we present the foundation of mathematics, too. A major
goal of this book is to introduce the reader in this new class of empirical and
mathematical results of measurement theory and an application to software
measurement. Proposing software measures is not theory. From our view, a theory of
software measures considers, among others,the models behind measures. From such
models, like a model of complexity, empirical theories can be derived.

Ordinal Scales or Higher Scale Levels for Software Measurement

There is a ongoing discussion, whether software measurement should take place only
on the ordinal scale level. Cherniavsky /CHER91/ points out: At best, we view
software complexity measures to be ordinal measures. This view is questionable
because in the software measurement area measures are heavily used, which assume
more sophisticated structures than only pure ranking properties, like the extensive
structure. Examples are the COCOMO model and all the many measures based on
the extensive structure. For example, the Measure LOC is a ratio scale measure if it is



2.9 Exercises 19

an ordinal scale measure. Measurement theoretic axioms show that. We address this
topic in almost each Chapter of this book, but especially we discuss it in Chapter 7.

Software Measures and Statistics

If you are interested in statistics and software measurement, then you only will find
limited help in this book. We refer to the book of Kitchenham /KITC96/. However, it
is our understanding that applying statistics to software measurement needs a theory
behind software measures. A theory behind software measures - as presented in this
book - and statistical investigations have to go hand in hand. It is our view that
statistics and theories behind software measurement support each other.

The (Software) Measurement Literature

The amount of literature in the area of software measurement and related topics
increases rapidly (See for that the end of Chapter 3 and the literature references on
the CD). However, only a few books contain sections of measurement theory and
software measures. Examples are Fenton /FENT91/, /FENT94/, /FENT95/,
/FENT96/, Shepperd /SHEP93a/, /SHEP95/, Henderson-Sellers /HEND96/, the IEEE
Standard 1061 of Schneidewind /IEEE93/ and Zuse /ZUSE91/. Fenton requires a
theory behind software measurement, but he only considers the ordinal scale.
Shepperd considers some aspects of measurement theory, but he does not use axiom
systems above the ordinal scale level. Zuse introduced axiom systems for several
scale types, the extensive structure and the modified function of qualitative belief.

Our approach of a framework for software measurement is based on the work of
Roberts /ROBE79/, Krantz et al. /KRAN71/, Luce et al. /LUCE90/, but the
formulated axiom systems, the presented empirical and numerical conditions, the
discussed binary or concatenation operations, cannot be transferred to software
measurement without essential modifications by the author for needs in software
measurement. From a practitioners view, our goal is to present concepts, which are
intuitive for the user, and can be described or characterized by empirical conditions.
The red thread of this book is to combine needs of practitioners with a proper theory.

Organization of the Book

The book contains twelve chapters. Almost each chapter of this book contains
exercises for undergraduate and graduate students. The solutions can be found in
Chapter 11. The structure of the book is the following.

 Chapter 1 contains the introduction.
 Chapter 2 presents prerequisites for software measurement. Models of programs

into flowgraphs, of software systems into the structure chart method, and models
of object-oriented programming, are presented. Examples of mismeasurement in
the area of software measurement are discussed. These examples shall help the



1 Introduction20

reader to understand, that software measurement without a sound theory is not
possible.

 In Chapter 3 the history and the state-of-the-art of software measurement is
presented.

 In the Chapters 4 and 5 a framework for software measurement is introduced,
which allows a translation of numerical properties back to empirical properties.
The framework for software measurement includes the analysis of properties
behind software measures, the validation of software measures, which is important
for the acceptance of software measures in practice, the evidence of empirical
conditions behind software measures, the prerequisites for appropriate statistics,
the meaning of measurement scales, the importance of hypotheses of reality, the
role of concatenation operations in order to get more sophisticated measurement
structures, the importance of combination rules, the reduction of wholeness to
additive measures, and a discussion of the role of units.

 In Chapter 6 foundations for object-oriented measures are given. Weaker axiom
systems than that of the extensive structure are introduced. They are based on the
function of belief, qualitative belief, qualitative relation of belief and the DeFinetti
axioms.

 In Chapter 7 desired properties of software measures, as proposed by many
authors, like Kearney et al., Weyuker, etc., are discussed. These mostly verbally
formulated properties are characterized with measurement theoretic conditions.

 Chapter 8 presents definitions and conditions for the internal and external
validation of software measures. Among others,it is shown, what prediction of
costs of maintenance in the context of the Measures LOC, the Measure of
McCabe, and the Informationflow Measure of Henry and Kafura, means. The
limits of the validation of software measures and prediction models are discussed
and five theorems for prediction models are presented.

 Chapter 9 considers the application of software measurement in practice. Among
others,the Function-Point Method and the COCOMO model are discussed in
detail, the application of software measurement during the software life-cycle and
software measurement in the context of the ISO9000-3 norm is considered. The
ISO 9000-3 norm implies measurement of processes and products. More than
seventy measures for the software life-cycle and for object-oriented applications
are discussed.

 Chapter 10 contains the afterword.
 Chapter 11 demonstrates the solution of the exercises.
 Chapter 12 contains a glossary of more than two hundred terms used in this book.

After the chapters above some attachments, references to literature, the name and
subject index are following.

 Attachment I presents a brief description of the System ZD-MIS



2.9 Exercises 21

 Attachment II presents the proof of equivalence of the two extensive structures as
discussed in the Chapters 4 and 5.

 Attachment III presents the proofs of the theorems for validation of measures and
prediction models of Chapter 8.

 Attachment IV presents the proofs of the Theorems C1-C4 (Independence
Conditions C1-C4) in Chapter 5.

 Attachment V presents the used notations, and
 Attachment VI gives an overview of the used axiom systems.
 A list of the used definitions, theorems, exercises can be found the end of the

book.
 References to Literature.

This book contains a CD that makes users able to search in a list of more than 1500
references of literature. The literature is classified by
pre-defined queries, like object-oriented measures,
measures for cohesion, coupling, experimentation, etc.
The CD also contains a small Demo-Version of the
System ZD-MIS (Zuse / Drabe Measure Information
System) /ZUSE95d/. It is a system that gives scientists
and practitioners the necessary knowledge for
education of software measurement for academics and
practitioners, and it supports people of commercial institutions in selecting software
measures for their needs (See the README.TXT file).





2.9 Exercises 23


